TDA Progress Report 42-76

October—December 1983

Optimum Cyclic Redundancy Codes for Noisier Channels

P. Merkey
California Institute of Technology, Student

E. C. Posner
Telecommunications and Data Acquisition Office

This article considers binary cyclic redundancy codes for feedback communication
over noisy digital links. The standard 16 bit ADCCP (American Data and Computer
Communication Protocol) polynomial is designed for digital links which already have a
low input bit error probability. For file transfer between personal computers over
telephone circuits, the quality of the resulting digital circuit may be much lower. Thus we
are led .to consider 3 byte (24 bit) and 4 byte (32 bit) polynomials. We find generator
polynomials of a certain class which have minimum weight and yet achieve the bound on
minimum distance for arbitrary codes. Particular choices for 24 bit and 32 bit redundan-
cies are exhibited: of weight and distance 6 in the 24-bit case; and weight 10 and
distance &8 in the 32-bit case. This could be useful as a NASA Standard.

l. Introduction

The ADCCP 16-bit cyclic redundancy check (CRC) poly-
nomial (Ref. 1, Sec. 4.3.1, p. 187) p(x) = x16 + x12 + x5 + |
has been specified for error detection and retransmission on
digital links using the X.25 packet communication standard
and for frame error detection in the Packet Telemetry Recom-
mendation of the Consultative Committee on Space Data Sys-
tems. This produces a code of minimum distance 4, so it can
detect three errors in a block. For this, a block may have any
length (conceptually) from 17 (when one information bit is
transmitted) to 2!5 - 1 = 32,767, which is one less than the
period of the polynomial. Typical lengths are often in the 500
to 2500 range. Encoding of CRC polynomials is very simple
algebraically, for we mrely append 16 check bits to the infor-
mation bits in the unique way which makes the resulting poly-
nomial divisible by p(x) (Ref. 1, Sec. 4.1.4, p. 163). Error

detections is even simpler, for, in the absence of errors, the
received polynomial must be a multiple of p(x).

The problem with this is that many file transfers are over
voice circuits, not digital links. Thus, the input bit error
probability can be much higher than for truly digital links.
Furthermore, for some uses such as electronic banking, we
may want extremely low output bit error probability, say
10-12, For these reasons, distance-4 codes may not be power-
ful enough. This will mean that we must add more redun-
dancy, for, as we show below, the largest minimum distance of
an (n, n- 16) code, linear or not, is 4 if 362 <n <215 - 1,

A self-imposed constraint is to make the redundancy a
multiple of 8 bits. This is because computers operate on 8-bit
bytes. We may want encoding and decoding to be done in the

189

computers which store and use the data rather than in a special
purpose outboard device. Thus we are led to look for good
binary CRC codes where the redundancy, instead of being 16,
is 24 or 32. This means that we want 24 and 32 degree
polynomials with good distance properties. The rest of the
paper finds these and shows how close they come to the
largest minimum distance for any code of the same param-
eters, cyclic redundancy or not. Our construction will be based
on known results for BCH codes or, rather, for generalized
BCH codes. We recommend particular polynomials of degrees
24 and 32 which have as few nonzero terms as possible given
some algebraic restrictions. This may make the programming
of the encoding and decoding easier or quicker, depending on
language and instruction set. Factorizations and other alge-
braic details of the polynomials are given as well.

Il. Largest Minimum Distances

We will want to know how good our codes are, even
compared with codes that don’t satisfy our self-imposed con-
straints. By “good” we mean that our codes have close to the
largest minimum distance that any code with the same redun-
dancy can have, for a range of code lengths of interest. The
following theorem allows us to find this largest minimum
distance.

Theorem 1: Suppose we are given an integer r > 0. Let ¢ be
a non-negative integer such that 2¢ + 1 <r. Let n,, = n,(¢) be
the smallest integer such that

§ (r]l”) > 2
j=0
Set

n(0) = o
and, for ¢ >0, let

nc = nc(t) = 2'.(""])/1‘.1 _1

where [x] means the greatest integer at most x. If n, <an,,
then for all # such that n, < n < n,, the largest minimum
distance for an (n, n - r) binary code is 2¢ + 2.

Remark: If »<2¢+ 1, there is no hope of getting a mini-
mum distance greater than or equal to 2¢+ 2. Merely let
exactly one of the # - r information bits be 1. There are only
check bits, so if d is the minimum distance, then
d<1+r<2t+2.

190

Proof: We first dispose of the case #=0. Note that for
t=0, n,(0) = 2". We have n,(0) = . The theorem holds since
the Hamming Bound (Ref. 2, Chap. 1, Para. 5, p. 19) forces
the minimum distance to be less than or equal to 2 for n >
2%, For, if the minimum distance were 3, we would have

(1 +n)2"" < 2"
1+4n < 2

n <2

So the minimum distance for n> 2" is 2. We can achieve
distance 2 with the code consisting of n-tuples of even parity,
an (n, n- 1) code. Because ¥ = 1, we can also achieve distance
2 for an (n, n- #) code. This completes the proof for the case
t=0.

Now let 7 be greater than 0. The Hamming Bound here too
implies that the minimum distance d satisfies d <¢+ 2 if
n=n,(t). For otherwise, if d>2¢+3, we would have an
(n, n~r) (¢+ 1)-error correcting code. From this, we would
find

i (”) gn—r g o
o
+1 (n) < 21,
j=0 !

But the above sum exceeds 2" forn = n, and all the more for
n=n,. So we certainly can’t do better than d =2+ 2 for
m=n,. Can we achieve d =2t + 2 if n,<n <n,? We can, as
the following argument shows,

If n <n,(7) we will construct a code which has the required
d = 2t + 2 by taking a subcode of a BCH code (Ref. 2, Chap.7,

Para. 6, p. 201). Let
- Lﬁ_lJ
" t

so that m=>2 and n(7)
element in GF(2™), and let

2™ >4, Let « be a primitive

MO, MO, MO), ..., M D(x)

be the ¢ minimum polynomials for &, 3, o, ..., @271,
respectively. Each of these M() has degree < m. From Ref.2

(Chap. 7, Para. 6, p. 201), we know that the product

= MO YO -1
Gpop@®) = MO MDD, . yCD

with repeated factors deleted is the generator polynomial for a
minimum distance 2 2¢ + 1 t-error correcting BCH code. We
note that deg [Ggey(X)] Stm<t(r-1)/t=r-1.

Now we define a code generator polynomial g(x) of degree
r<r

g00) = (x+ 1) Gpop®)

The code generated by g(x) has “natural” length 2™ ~ 1. Since
it is a subcode of the even-weight codewords in a #-error
_correcting BCH code, it has minimum distance at least 2¢ + 2,
as desired. Here ' <r, so we can pad in 7’ - r check bits of 0 if
we really want an (n, n - r) code.

We can get a code of any other length less than 2™ by
simply setting the appropriate number of high-order terms
equal to zero before encoding, and then padding with »' - #
zeros as before. As long as we do not shorten the code to a
length less than r,(7), the minimum distance 2¢ + 2 will be as
large as possible by our earlier result. l

We now look more closely at 7, ¢ and the set of integers
n(f)Sn< nc(t). For all we know, n, <, and the theorem

is vacuous.

If n is such that

< (n- t)t+1
(r+ !
;
then
1 t+1
n n (n-t v
],‘_4_; (]) (Hl) (t+ 1) > 2

This means that nb(r) is at most such an #, or
n, (1) <t -+ 27CD[(z + 1)1)] D)

We note that when ¢ is small relative to », the usual case, this

serves as a good approximation to n,.

Now let us get a lower bound on nc(t). We have

n (1) = 2D 1 > ole=tya-1
c

= 2(r—t—1)/t -1; nc(t) > 2(r—t—1)/t -1

Together, the upper bound on 71, and lower bound on #,
imply the following:

207170 = g - g KD (4 HMYED <y () - 0, (D)
Define f(7, t) as the left-hand side of this inequality. Then

f@r, 1) = 276+ (2[1’—(t+1)21/[1(t+1)] - [(¢+ DIPLERT

-+ 1)

For ¢ fixed, then, we see that
f(r, t)—~>o as p—>o0
Specifically, since for £ = 0
(¢+ D! <@+ 1)
we will have

f(r, N = 2r/(t+1) [2[r—(t+1)2/[t(t+1)] _ (Z"l‘ 1)] B (t + 1)

So if

F> (et 1)% + (2% + Dlog, (2 +2)

then f(r, ©) > 0 and n,(f) < n(f). This shows that the
inequality of the statement of the theorem is satisfied for a
non-trivial set of r and ¢.

We have exactly computed the interval n,(f) < n < n ()
for r= 16, 24 and 32 in Table 1. We see from this that for
codes with dimensions near 576 the minimum distances will be
4, 6, 8 for redundances 16, 24, 32, respectively. We single out
n=2576 (72 bytes) because some file-transfer protocols for
personal computers use blocks with 68 information bytes,
which implies codewords of 72 bytes if r = 32.

191

ll. Minimum-Weight Generator for r= 32

To actually find a CRC code rather than just any code
presents a minor annoyance, because using the relation 7' <r
in the preceding section, we may have to pad with zeros. We
will handle this in a somewhat ad hoc fashion.

We saw from Table 1 that for 568 <<n < 1023; we can
generate a distance d =8 (#=3) optimum code using the
generator polynomial

g(x) = (x + 1) Gy ()

(here the degree of Gpeyy(x) is 30). This is because of the
following reasoning. We find that

32- 1
= 22| =10

If o is a primitive 2!%th root of unity over GF(2), then we
seek the degrees of the minimal polynomials of « (this degree
is of course 10), o, and &°. Now 1023 is not prime, but it
turns out that &® and o still have all 10 distinct conjugates.
Thus, the three minimal polynomials M®(x), M@ (x), and
MG)(x) are each of degree 10, and g(x) is of degree 31.

To get a generator polynomial giving a CRC of degree 32,
we can multiply g(x) by x or by x + 1 to obtain a g, (x). In the
former case, we will have the rightmost position always 0. In
the latter case, the period of the degree-32 generator is not
1024 but 2048. Both of these “deficiencies” are irrelevant for
our application, so we shall indeed work with just such gl(x)’s.

Using the primitive trinomial
x10+x3+1

from Peterson’s tables (Ref. 3, App. C, pp. 472-492), we obtain
a primitive element « of GF(219). Now the: construction of
BCH codes generalizes from that used in the previous section.
Specifically, let 0 <» < 2" - 2 and let s be prime to 2/7~1
(=1023 in our case), where o is a primitive element in GF(2'").
Consider the 2¢ elements

. A t—2)s’ qbt@e-1s

Let these elements be contained in exactly ¢ cyclotomic
cosets, say

G, i=1,3,5...,2-1

192

Let

M(i)(x), i=1,3,5,,..,2t~ 1

be the ¢ minimal polynomials of these cosets. Then the
product

GBCH (x) = M(l) M(3) M(S)’ . ’M(zt_'l)

generates f-error-correcting BCH code.

We are interested in m =10, s prime to 1023 = 3+11-31,
0<b <1022, t = 3. There are 1023 b’s to check and

6(1023) = 1023 (1 —%) (1 -1—11) (1 . %)

=2+10+30 = 600

values of s to check. By “check’ we mean to find theM® and
thus the weight (number of 1’s) of (x + DGy (%), or rather
the minimum of the weights of x(x + l)GBCH (¢) and (x + 1)?
Gaeplx), so that we get a polynomial of the desired degree 32.

The degree is 32, because in this case each M® has degree
exactly 10. For, if one ever had degree less than 10, it would
have degree at most 5, being a divisor of 10. The resulting
Gpeny () would generate a code of length 1023, of distance
= 8, with an r< 26. But calculations based on Theorem 1
imply that a code with » < 26 and of length 1023 cannot have
minimum distance = 8.

Why is the code generated by (x + 1) Ggoy(x) of length
10237 If the 6 elements

were all in a smaller field, then the element

b+s
g _ o
& =%

64

would be in that field as well. But s is prime to # = 1023, so o’
generates all of GF(21%) and is not in a smaller subfield.

It looks as if we have 600-1023 = 613,800 polynomials
(times 2 because of the x or x + 1 multiplier choice) of g(x) to

check for weight. However, if (using the normal abuse of
notation)

bybts,bt+2s,b+35,btd4s b+5s

are in C1’ C3, Cs, then so are
2b,2b + 2s, 2b + 4s, 2b + 65, 2b + 85, 2b + 10s

And since (n, 5) = 1 implies (n, 25) = 1 for n 0dd, we need only
check the cases where b is a coset representative.

Further, if (n, 5) = 1, then (#, n - 5) = 1. So if
bbb+ b+2s,b+3s,b+4s, b+ 5s
are in C1’C3’ Cs,then

~b,-b-8~b-25,-b-35,-b-4s,-b- 55

are in 51, 53, 55, where 51, 53, 55 contain the inverses of the
elements in the cosets C|, C,, C,. Thus the Gy, () resulting
from the choices -5 and -s will be the reciprocal of the
Gpey(x) resulting from the choices b ands. When these
reciprocals are multiplied by (x + 1), the results are again
reciprocals. Then, since multiplying by x doesn’t change the
weight and multiplying by (x + 1) again preserves reciprocals,
the polynomials resulting from b and s will have the same
weights as those resulting from -5 and -s.

These considerations reduce our list of ’s to only 55 that
need to be checked. The polynomials in this list were enumer-
ated and the lowest weight polynomials found were of weight
10. They are:

g0 =x32 +x30 4+ x22 4 ¢ 15 4 111 4 317 4 46 4 x5+ x
=x(xt D0+ xB xS+t + D0+ xT X+ x3+1)) ()
X(xlo+x9+x8+x6+x2+x+1)

g()=x32 +x27 4 x23 4 x18 4 x15 4 19 4 11 Bt by
=x(x+l)(xl0+xs+x3+x2+1)(xl°+x9+x5+x4+1) (ii)

X(x'®+x® +x5+x34x? +x+1)

We defined « as a root of x'® + x3 + 1, Using this,

(1) a®° isaroot of x10 +x® + x5 +x* + 1 =MD (x)

o8 isaroot of x1® +x7 +x5 +x3 + 1 =M®)(x)

o' isaroot of x¥0+x% +x8+x% +x2 +x+1 =M (x)
(2) o' isaroot of x1®+ x5 +x3 +x2 + 1 =MD (x)
a®®® isaroot of x10 +x° +x5 +x* + 1=M®)(x)

% isaroot of x*® +x8 +x5 +x% +x2 +x+1=M®(x)

We recommend that one of these be adopted, specifically the
second, because the gaps are ‘more uniform. This may make
hardware or software easier.

Of course, we had hoped to find a polynomial of weight 8;

we do not know whether or not such a polynomial of any
form exists. This seems hard to rule out.

IV. The Case r= 24

A similar search was carried out using irreducible poly-
nomials of degree 11. We found

gx) = X2 4 x21 £ x20 417 4 13 4 512 453 4y

2 x4 x® +x® 1 xT rx® v xS H Xt A1) S ()

XM +x10 4+ x% 4 x7 4+ x8 +x5 +x% +x% +1)

) = XM +x22 412 1510 439 432 byt]
(i)

12+)t X7 xS A X3t x 1)

1

Both have weight 8 and give the largest minimum distance 6
for lengths n between 446 and 2047. We will get a weight-6
below, but only for n up to 1023. Here, o is a primitive
element of GF(211), a root of the polynomial

xM x4l

Then,

(1) 163 2

isaroot of x*' +x19 +x% +x® +x7 +x% + x5 +x
+1=MD(x)

- 3
o*3 isarootof x! +x10+x% +x7 +x0 + x5 +x% +x

+1=MB)(x)

(2) &®*! isaroot of x1 1+ x%+x7+ x5+ x> +x+1=MD(x)
1923 js a root of x! +x% + 1= M®)(x)

193

As an alternative approach, using irreducibles of degree 10,
we found

g(x) = X2 +x2 4 x1% 4 x12 4 x5 ¢y
= x4 l)(xt D' +x8+x7 +x8+ x5 +txt+xd+x+1)
X (10 +x? +x8 +x% +1)

which (with its reciprocal) was the only polynomial of this
type of weight 6. Again it gives a distance 6 code but it can be
used only up to a length of 1023. It does, however, have
weight equal to distance, 6 instead of 8, which is satisfying.
Note that this time we pad the degree to 24 with x3 +x2 + 1,
which complicates the periodicity or natural length. But the
argument that the distance is 6 out to length 1023 and not
beyond still works. We recommend this for » = 24 check bits if
codewords of length around 600 are desired.

As before, a is a root of x10 +x3 + 1, which is primitive.
We have

(1) o' isarootof x1® +x® +x7 +x0 + x5 +x* +x3 +x + 1
=M(1) (x)

(2) 7 isarootof x10 +x% +x% +x* + 1=M® (x)

This completes our description of the optimal polynomials for
r=32and r=24.

We close this article by noting that for » = 16, the ADCCP
polynomial is the best choice. From Table 1, distance 4 is the
largest attainable. The polynomial is (x + 1) .times a primitive,
so its distance is 4. And the weight is 4. It was a good choice as
a standard.

References

1. Inose, Hiroshi, 1979, An Introduction of Digital Integrated Communications Systems,

Univ. of Tokyo Press, Tokyo, Japan.

2. MacWilliams, F. J., and Sloane, N. I. A., 1977, The Theory of Error-Correcting Codes,

North-Holland, Amsterdam.

3. Peterson, W. Wesley, and Weldon, Jr., E. J., 1972, Error-Correcting Codes, Second

Edition, MIT Press, Cambridge, MA.

194

Table 1. The intetval n, < n < n_ for varlous r and ¢

Largest Interval of Code Lengths n

Minimum

Distance t r=16 r=24 r=32
d=4 t=1 362<n <2151 5793<n <2231 92682<n<231
d=6 t=2 14 <n<27-1 466 <n <2101 2954 <n <2151
d=28 t=3 non non 568<n<210—-1

195

